A vulnerability in Cisco 900 Series Aggregation Services Router (ASR) software could allow an unauthenticated, remote attacker to cause a partial denial of service (DoS) condition on an affected device. The vulnerability is due to insufficient handling of certain broadcast packets ingress to the device. An attacker could exploit this vulnerability by sending large streams of broadcast packets to an affected device. If successful, an exploit could allow an attacker to impact services running on the device, resulting in a partial DoS condition.
A vulnerability in the detection engine of Cisco Firepower System Software could allow an unauthenticated, remote attacker to bypass a configured Intrusion Prevention System (IPS) rule that inspects certain types of TCP traffic. The vulnerability is due to incorrect TCP retransmission handling. An attacker could exploit this vulnerability by sending a crafted TCP connection request through an affected device. A successful exploit could allow the attacker to bypass configured IPS rules and allow uninspected traffic onto the network.
A vulnerability in the Cisco Aironet Series Access Points (APs) software could allow an authenticated, adjacent attacker to cause an affected device to reload unexpectedly, resulting in a denial of service (DoS) condition. The vulnerability is due to a deadlock condition that may occur when an affected AP attempts to dequeue aggregated traffic that is destined to an attacker-controlled wireless client. An attacker who can successfully transition between multiple Service Set Identifiers (SSIDs) hosted on the same AP while replicating the required traffic patterns could trigger the deadlock condition. A watchdog timer that detects the condition will trigger a reload of the device, resulting in a DoS condition while the device restarts.
A vulnerability in the 802.11r Fast Transition feature set of Cisco IOS Access Points (APs) Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to a corruption of certain timer mechanisms triggered by specific roaming events. This corruption will eventually cause a timer crash. An attacker could exploit this vulnerability by sending malicious reassociation events multiple times to the same AP in a short period of time, causing a DoS condition on the affected AP.
A vulnerability in the cryptographic hardware accelerator driver of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause an affected device to reload, resulting in a temporary denial of service (DoS) condition. The vulnerability exists because the affected devices have a limited amount of Direct Memory Access (DMA) memory and the affected software improperly handles resources in low-memory conditions. An attacker could exploit this vulnerability by sending a sustained, high rate of malicious traffic to an affected device to exhaust memory on the device. A successful exploit could allow the attacker to exhaust DMA memory on the affected device, which could cause the device to reload and result in a temporary DoS condition.
A vulnerability in the Bulk Administration Tool (BAT) for Cisco Unity Connection could allow an authenticated, remote attacker to cause high disk utilization, resulting in a denial of service (DoS) condition. The vulnerability exists because the affected software does not restrict the maximum size of certain files that can be written to disk. An attacker who has valid administrator credentials for an affected system could exploit this vulnerability by sending a crafted, remote connection request to an affected system. A successful exploit could allow the attacker to write a file that consumes most of the available disk space on the system, causing application functions to operate abnormally and leading to a DoS condition.
A vulnerability in the TCP syslog module of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to exhaust the 1550-byte buffers on an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to a missing boundary check in an internal function. An attacker could exploit this vulnerability by establishing a man-in-the-middle position between an affected device and its configured TCP syslog server and then maliciously modifying the TCP header in segments that are sent from the syslog server to the affected device. A successful exploit could allow the attacker to exhaust buffer on the affected device and cause all TCP-based features to stop functioning, resulting in a DoS condition. The affected TCP-based features include AnyConnect SSL VPN, clientless SSL VPN, and management connections such as Secure Shell (SSH), Telnet, and HTTPS.
A vulnerability in the web proxy functionality of Cisco AsyncOS Software for Cisco Web Security Appliances could allow an unauthenticated, remote attacker to exhaust system memory and cause a denial of service (DoS) condition on an affected system. The vulnerability exists because the affected software improperly manages memory resources for TCP connections to a targeted device. An attacker could exploit this vulnerability by establishing a high number of TCP connections to the data interface of an affected device via IPv4 or IPv6. A successful exploit could allow the attacker to exhaust system memory, which could cause the system to stop processing new connections and result in a DoS condition. System recovery may require manual intervention. Cisco Bug IDs: CSCvf36610.
A vulnerability in service logging for Cisco Prime Service Catalog could allow an authenticated, remote attacker to deny service to the user interface. The vulnerability is due to exhaustion of disk space. An attacker could exploit this vulnerability by performing certain operations that lead to excessive logging. A successful exploit could allow the attacker to deny service to the user interface. Cisco Bug IDs: CSCvd39568.
A vulnerability in the Secure Sockets Layer (SSL) packet reassembly functionality of the detection engine in Cisco Firepower System Software could allow an unauthenticated, remote attacker to cause the detection engine to consume excessive system memory on an affected device, which could cause a denial of service (DoS) condition. The vulnerability is due to the affected software improperly handling changes to SSL connection states. An attacker could exploit this vulnerability by sending crafted SSL connections through an affected device. A successful exploit could allow the attacker to cause the detection engine to consume excessive system memory on the affected device, which could cause a DoS condition. The device may need to be reloaded manually to recover from this condition. This vulnerability affects Cisco Firepower System Software Releases 6.0.0 and later, running on any of the following Cisco products: Adaptive Security Appliance (ASA) 5500-X Series Firewalls with FirePOWER Services, Adaptive Security Appliance (ASA) 5500-X Series Next-Generation Firewalls, Advanced Malware Protection (AMP) for Networks, 7000 Series Appliances, Advanced Malware Protection (AMP) for Networks, 8000 Series Appliances, Firepower 4100 Series Appliances, FirePOWER 7000 Series Appliances, FirePOWER 8000 Series Appliances, Firepower 9300 Series Security Appliances, Firepower Threat Defense for Integrated Services Routers (ISRs), Firepower Threat Defense Virtual for VMware, Industrial Security Appliance 3000, Sourcefire 3D System Appliances. Cisco Bug IDs: CSCve23031.
A vulnerability in the internal packet-processing functionality of Cisco Firepower Threat Defense (FTD) Software for Cisco Firepower 2100 Series Security Appliances could allow an unauthenticated, remote attacker to cause an affected device to stop processing traffic, resulting in a denial of service (DoS) condition. The vulnerability is due to the affected software improperly validating IP Version 4 (IPv4) and IP Version 6 (IPv6) packets after the software reassembles the packets (following IP Fragmentation). An attacker could exploit this vulnerability by sending a series of malicious, fragmented IPv4 or IPv6 packets to an affected device. A successful exploit could allow the attacker to cause Snort processes on the affected device to hang at 100% CPU utilization, which could cause the device to stop processing traffic and result in a DoS condition until the device is reloaded manually. This vulnerability affects Cisco Firepower Threat Defense (FTD) Software Releases 6.2.1 and 6.2.2, if the software is running on a Cisco Firepower 2100 Series Security Appliance. Cisco Bug IDs: CSCvf91098.
A vulnerability in the application server of the Cisco Unified Customer Voice Portal (CVP) could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on the affected device. The vulnerability is due to malformed SIP INVITE traffic received on the CVP during communications with the Cisco Virtualized Voice Browser (VVB). An attacker could exploit this vulnerability by sending malformed SIP INVITE traffic to the targeted appliance. An exploit could allow the attacker to impact the availability of services and data on the device, causing a DoS condition. This vulnerability affects Cisco Unified CVP running any software release prior to 11.6(1). Cisco Bug IDs: CSCve85840.
A vulnerability in management interface access control list (ACL) configuration of Cisco NX-OS System Software could allow an unauthenticated, remote attacker to bypass configured ACLs on the management interface. This could allow traffic to be forwarded to the NX-OS CPU for processing, leading to high CPU utilization and a denial of service (DoS) condition. The vulnerability is due to a bad code fix in the 7.3.2 code train that could allow traffic to the management interface to be misclassified and not match the proper configured ACLs. An attacker could exploit this vulnerability by sending crafted traffic to the management interface. An exploit could allow the attacker to bypass the configured management interface ACLs and impact the CPU of the targeted device, resulting in a DoS condition. This vulnerability affects the following Cisco products running Cisco NX-OS System Software: Multilayer Director Switches, Nexus 2000 Series Switches, Nexus 3000 Series Switches, Nexus 5500 Platform Switches, Nexus 5600 Platform Switches, Nexus 6000 Series Switches, Nexus 7000 Series Switches, Nexus 7700 Series Switches, Nexus 9000 Series Switches in standalone NX-OS mode. Cisco Bug IDs: CSCvf31132.
A vulnerability in IPv6 ingress packet processing for Cisco UCS Central Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition due to high CPU utilization on the targeted device. The vulnerability is due to insufficient rate limiting protection for IPv6 ingress traffic. An attacker could exploit this vulnerability by sending the affected device a high rate of IPv6 packets. Successful exploitation could allow the attacker to cause a DoS condition due to CPU and resource constraints. Cisco Bug IDs: CSCuv34544.